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Abstract The copolymer of styrene-co-acrylonitrile (SAN) was synthesized by

the atom transfer radical polymerization (ATRP) using FeCl3-isophthalic acid (IA)/

2,20-azobis(isobutyronitrile) catalyst system under microwave irradiation (MI).

Compared with conventional heating (CH), the copolymerization rate was accel-

erated under MI, and the conversion of monomer rapidly achieved 30% in 38 min

for MI relative to 8% for CH under other same conditions. The kinetics results

indicated that RATRP of St/AN is a ‘living’/controlled polymerization, corre-

sponding to a linear increase of molecular weights with the increasing of monomer

conversion and a relatively narrow polydispersities index (PDI \ 1.25) when the

conversion is beyond 30%. The resultant SAN was characterized by FT–IR, NMR,

and GPC.

Keywords Microwave irradiation � Reverse atom transfer radical polymerization �
FeCl3/isophthalic acid � Styrene � Acrylonitrile

Introduction

Styrene-co-acrylonitrile (SAN) copolymers are the thermoplastics that have

important commercial applications in great demand because of their superior

optical transparency, thermoplasticity, and easy processability [1]. SAN is typically

synthesized with free radical polymerization, which was carried out in bulk, solution

as well as emulsion polymerization [2–7]. However, the major drawback of

traditional radical polymerization lies in poorly controlled molecular weight

distribution due to the high radical concentration. As we know, the molecular
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weight and the distribution of molecular weight are important for the properties of

polymers. The development of controlled/‘living’ radical polymerizations (CRPs) in

the 1990s provided possibility to control the molecular weight (MW) and molecular

weight distribution (MWD) of polymers. As a member of CRPs, atom transfer

radical polymerization (ATRP) has developed into one of the most robust synthetic

tools to synthesize the well-defined polymers, including block [8–10], graft [11–13],

star [14–16] copolymers. However, the conventional ATRP is imperfect in the

initiation system such as the source of the initiator (R-X) is limited and the catalyst

is unstable to the air and moisture [17]. To overcome these shortcomings, a so called

reverse ATRP (RATRP) has been developed and successfully applied to obtain the

well-defined polymers [18]. The ligands used in RATRP are usually Triphenyl-

phosphine (PPh3) [17] and 2,20-bypyridine [18] or its derivatives, which are either

expensive or toxic. Therefore, exploring a cheap and nontoxic is important and

necessary. Recent studies indicated acids could act as a substitute in the RATRP

[19–22].

As an alternative to conventional heating, the microwave irradiation has become

a popular in organic chemistry [23–25]. Recently, many polymerizations, such as

step-growth polymerizations [26–28], ring-opening polymerizations [29–31], tradi-

tional radical polymerizations [32] as well as ATRP [33–36] are also well-

performed under microwave irradiation. By comparison with conventional heating

(CH), polymerization under microwave irradiation (MI) have the advantages of

higher reaction rate and greater yield of polymer within a shorter period of reaction

time; namely, it can evidently enhance the reactivity of reaction with the fewer side

reactions. To our best knowledge, there have been no reports on RATRP of styrene

and acrylonitrile under microwave irradiation.

In this study, SAN copolymer was performed by RATRP in N,N-dimethylform-

amide (DMF) at 60 �C using FeCl3/isophthalic acid/AIBN catalyst system under

microwave irradiation. In additional, the kinetics of polymerization was also

investigated.

Experimental

Materials

Styrene (St, Shanghai Chemical Reagents Co., AR grade), acrylonitrile (AN,

Shanghai Chemical Reagents Co., AR grade) were distilled under reduced prior to

use. 2,20-azobis(isobutyronitrile) (AIBN, Shanghai 4th factory of chemicals, 99%)

was recrystallized twice from methanol. N,N-dimethylformamide (DMF) was

distilled at reduced pressure prior to use. FeCl3, isophthalic acid, and other regents

were used as received.

Polymerization

All reactions were carried out in an XH-100 laboratory microwave oven (Beijing,

China). The MW power was set at 200/400 W and the temperature was measured by
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an immersed platinum resistance thermometer and controlled automatically by

intermittent irradiation. In a typical experiments, 4.08 g of AN (0.077 mol), 12.79 g

of St (0.123 mol), 0.164 g of AIBN 0.001 mol), and 100 mL of DMF were first

placed in a three-necked bottle. The flask was then degassed with nitrogen for

30 min, and then 0.162 g of FeCl3 (0.001 mol) and 0.324 g of isophthalic acid

(0.002 mol) was added. The flask was sealed after degassed with nitrogen, the flask

was placed in a thermostated oil bath, and the temperature was controlled by a

refluxing solvent of CCl4. After the desired polymerization time, the round flask

was cooled by immersing it into ice water. The reactant was pored into a large

amount of methanol for precipitation, the obtained SAN copolymer was dried

at 60 �C in vacuo for 24 h. Monomer conversion was determined by gravimetry.

The MnðthÞ of SAN can be calculated by the following equation: Mn(th) = ([St/AN]0/

2[I]) 9 WSt/AN 9 x. Where, [St/AN]0 is the initial concentration of St/AN, [I] is the

concentration of AIBN and WSt/AN is the molecular weight of St and AN, x is the

monomer conversion.

Characterization

The molecular weight and molecular weight distribution of the polymer were

determined with a Waters 1515 gel permeation chromatography (GPC) equipped

with refractive index detector, using HR1, HR3, and HR4 column with molecular

weight range 100–500,000 calibrated with polystyrene standard sample. Polystyrene

standards are used to calibrate the columns. THF was used as a mobile phase at a

flow rate of 1.0 mL/min and with column temperature of 30 �C.

FT–IR spectrum was recorded on a NICOLET 370 FT–IR spectrometer from

powder-pressed KBr pellets.

NMR spectrum was recorded on a Bruker 400 MHz Spectrometer instrument

using d6-DMSO as the solvent.

Results and discussion

Preparation of SAN by RATRP

SAN copolymer was prepared by RATRP process using FeCl3-isophthalic acid

(IA)/2,20-azobis(isobutyronitrile) catalyst system under microwave irradiation (MI)

as described in Scheme 1.

During the RATRP process, the initiator is first decomposed into two

primary radicals, and then the produced radical can react with the monomer and

CH CH2 H2C CH

CN
+

CH CH2 CH

CN

n
AIBN

FeCl3/IA

H2C

Scheme 1 Preparation of SAN copolymerization by RATRP
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FeCl3/isothphalic acid, which is reduced to form FeCl2/isothphalic acid. The

polymers propagate via a conventional ATRP process. The obtained SAN

copolymer was characterized by FTIR, and the FTIR spectrum was shown in

Fig. 1. As indicated, the absorption peak at 2239 cm-1 was assigned the nitrile

group stretching vibration, the stretching vibration of benzene ring of the PS portion

appeared at 1604 cm-1.

The SAN copolymer was further verified by 1H NMR spectrum. In the 1H NMR

spectrum (Fig. 2), the chemical shift d = 6.5–7.5 ppm corresponded to the phenyl

protons of styrene. The chemical shift at d = 3.3 and 1.76 were attributed to the

protons of CH of acrylonitrile and St, respectively. Moreover, the mole ratio of St to

AN was estimated about 1 according to the integral area ratio of protons at d = 3.3

and 1.76. The weak chemical signals situated at d = 4.5–5.3 ppm was proton of end

group of –CHCl.

However, the methylene and methyne protons of the copolymer is overlapped in

the region 1.2–3.1 ppm, and the poor resolution makes a detailed interpretation

was impossible. For this reason, 13C NMR spectrum of one representative

copolymer sample is shown in Fig. 3. Whereas the aromatic ring carbons appear

around 125–126 ppm, the nitrile carbon resonance shows multiplet splitting

around 120.1–121.4 ppm, the methylene carbons appear in the spectrum around

36–42 ppm, the methine protons of the copolymer show multiplet splitting around

25–28 ppm [37].

Kinetics of RATRP under conventional heating (CH) and MI process

In this study, the kinetics of RATRP of copolymerization of St and AN was

investigated. The polymerization was performed at 60 �C in DMF, and the mole
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Fig. 1 FTIR spectrum of SAN

1812 Polym. Bull. (2011) 67:1809–1821

123



ratio of [M]0/[AIBN]/[FeCl3/[IA]was fixed to 200:1:1:2. The semilogarithmic plot

of ln([M]0/[M]) versus the polymerization time was shown in Fig. 4.

According to Fig. 4, it was found that the semilogarithmic plot of ln([M]0/[M])

verse reaction time is nearly linear, which suggested that the chain growth from the

macroinitiator was almost consistent with a ‘‘controlled’’ or ‘‘living’’ process. In

order to compare the results affected by CH, we conducted the ATRP of two

monomers under the same condition in CH process, which shown in Fig. 4b.

ppm (t1)

0.01.32.53.85.06.37.58.8

Fig. 2 1H NMR spectrum of SAN

ppm (f1)
050100150200

Fig. 3 13C NMR spectrum of SAN
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In additional, an induction period of about 2.5 min for MI and about 7.5 min under

for CH were observed, respectively. The induction periods correspond to the

decomposition of AIBN and to the establishment of the equilibrium between Fe(III)

and Fe(II), as described by Xu et al [32]. The radical polymerization rate can be

expressed in the following equation:

�d½M�=dt ¼ kp½P��½M� ð1Þ

By integration of Eq. 1, the kinetic equation was obtained as:

lnð½M�0=½M�Þ ¼ kapp
p t ð2Þ

The value of slope is equal to the value of the apparent rate constant (kapp
p ).

Therefore, we could obtain the rate of polymerization was 1.8 9 10-4 s-1 for MI

and 4.85 9 10-5 s-1 for CH, respectively. Therefore, the copolymerization of

St/AN under MI were faster than that under CH. Conversion 30% was achieved in

38 min as compared to only 8% conversion under CH.

Figure 5 shows that the dependence of the number-average molecular weights on

monomer conversion for St/AN copolymerization in DMF at 60 �C. From the

Fig. 5, it can be seen that the values of Mn increase linearly with conversion under

MI and under CH, and the molecular weight increased from 930 to 6520 g/mol

under MI and from 860 to 5130 g/mol under CH when the conversion of monomer

from 3 to 74% under MI and from 5 to 60% under CH, respectively. From the

Fig. 5, the Mns were almost matched with their corresponding theoretical molecular

weights, especially in higher monomer conversions.

The polydispersity index (PDI) as a function of monomer conversion of all

copolymer of SAN is also depicted in Fig. 5. The value of PDI of SAN decreased

from 1.46 to 1.22 under MI and from 1.42 to 1.21 under CH. The values of PDI are

less than 1.25 when the conversion is beyond 30%. It implied a well-controlled

polymerization process.

Fig. 4 Dependence of ln([M]0/[M]) and reaction time during RATRP [St ? AN]0/[AIBN]0/[FeCl3]/
[IA] = 200:1:1:2
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The effect of initiator concentration on RATRP copolymerization of St and AN

Figure 6 showed the ln([M]0/[M]) verse time for the RATRP copolymerization of

St/AN with different initiator concentrations 0.01, 0.02, 0.03 mol L-1, respectively.

The copolymerization rate increased with an increasing the amount of initiator since

more radicals can be generated. From the Fig. 6, the value of slope is equal to the

value of the apparent rate constant (kapp
p ), which is 2.7, 2.2, 1.8 9 10-4 s-1,

respectively. It indicates that the rate of copolymerization increases with increasing

the initiator concentration.

Fig. 5 Dependence of the molecular weights and molecular weight distributions on monomer conversion
for St/AN copolymerization in DMF at 60 �C under MI and under CH. [St ? AN]0/[AIBN]0/[FeCl3]/
[IA] = 200:1:1:2; MI power 300 W

Fig. 6 Kinetics of the solution copolymerization of St/AN under MI and CH in DMF at 60 �C. [AIBN]0

is 0.01, 0.02, 0.03 mol L-1, respectively. [St ? AN]0/[AIBN]0/[FeCl3]/[IA] = 200:1:1:2; MI power
300 W
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The molecular weight and polydispersity index are given in Figs. 7 and 8. As

indicated, the linear increase of molecular weights with the monomer conversion,

while the variation of PDI was little. The Mn values are close to their corresponding

theoretical ones. Moreover, the low polydispersities of the polymer chains (\1.3)

when the conversion is beyond 30% (see Fig. 8).

The effect of the ratio of FeCl3/IA on RATRP copolymerization of St and AN

under MI.

The effect of acid on the RATRP copolymerization of St/AN under MI was

further investigated, and the results are shown in Fig. 9.

Fig. 7 Dependence of the molecular weights on monomer conversion for St/AN copolymerization in
DMF at 60 �C under MI. [AIBN]0 is 0.01, 0.02, 0.03 mol L-1, respectively. [St ? AN]0/[FeCl3]/
[IA] = 200:1:2; MI power 300 W

Fig. 8 Dependence of PDI on monomer conversion for St/AN copolymerization in DMF at 60 �C under
MI. [AIBN]0 is 0.01, 0.02, 0.03 mol L-1, respectively. [St ? AN]0/[FeCl3]/[IA] = 200:1:2; MI power
300 W
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Based on Fig. 9, the rates of copolymerization of kapp
p were 1.33, 1.8,

1.02 9 10-4 s-1, corresponding to the ratio of [FeCl3]:[IA] of 1:1, 1:2, and 1:3,

respectively. This suggested that the concentration of acid has an important role in

reacting with active species or catalyzing the elimination of the initiator.

The dependence of the molecular weights and molecular weight distributions on

monomer conversion for St/AN copolymerization are shown in Figs. 10 and 11.

From the Fig. 10, the number molecular weight increases with the increasing of

monomer conversion. The experimental molecular weight deviates from the

theoretical one, especially at low conversion (\20%). This was attributed to the

Fig. 9 Kinetics of the solution copolymerization of St/AN under MI in DMF at 60 �C. The molar ratios
of [FeCl3]:[IA] = 1:1, 1:2, 1:3, respectively.[St ? AN]0/[AIBN]0/[FeCl3] = 200:1:1; MI power 300 W

Fig. 10 Dependence of the molecular weights on monomer conversion for St/AN copolymerization in
DMF at 60 �C under MI. The molar ratios of [FeCl3]:[IA] = 1:1, 1:2, 1:3, respectively.[St ? AN]0/
[AIBN]0/[FeCl3] = 200:1:1; MI power 300 W
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poor control on the copolymerization in the early stages, which also reflected by the

values of PDI. The values of PDI were broader at low conversion (\35%), while the

value almost kept constant when the conversion is beyond 35% at the ratio of

[FeCl3]:[IA] = 1:2.

The effect of monomer concentration on RATRP copolymerization of St and AN

The RATRP copolymerization of St and AN were conducted at the different

monomer concentration. The results are shown in Fig. 12.

From the Fig. 12a, it can be seen that the dependences of ln([M]0/[M]) on

reaction time at different monomer concentration are in accordance with the

characteristic of ATRP. The conversion of monomers increased with increasing of

reaction time and the plots of ln([M]0/[M]) versus time have well first-order

Fig. 11 Dependence of PDI on monomer conversion for St/AN copolymerization in DMF at 60 �C
under MI. The molar ratios of [FeCl3]:[IA] = 1:1, 1:2, 1:3, respectively. [St ? AN]0/[AIBN]0/
[FeCl3] = 200:1:1; MI power 300 W

Fig. 12 Kinetics of the solution copolymerization of St and AN under MI in DMF at 60 �C. [St ? AN]0/
[AIBN]0/[FeCl3]/[IA] = 200 or 400 :1:1:2; MI power 300 W
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linearity. But, the copolymerization rate starts slightly higher (for [St ? AN]0 =

4 mol L-1) than the one (for [St ? AN]0 = 2 mol L-1) at low conversions and it

decreases when the reaction time is beyond 15 min (Fig. 12b).

Chain extension of poly(SAN)

To confirm the existence of ‘living’ chain ends, chain extensions of the obtained

chlorine-terminated SAN were performed under MI. The 1.7 g SAN sample

(Mn = 5210, PDI = 1.22) was first dissolved in DMF as macroinitiator, and then

styrene (4.2 g, 0.04 mol) and acrylonitrile (1.33 g, 0.025 mol), and FeCl3
(3.25 9 10-4 mol), and IA (6.5 9 10-4 mol) were added. After 0.5 h polymeri-

zation under MI, the polymerization was terminated. The obtained polymer was

further purified by washed with water and methanol. And the dried polymer was

analyzed with GPC. And the GPC result was indicated in Fig. 13. According to

Fig. 13, the Mn increased from 5210 to 10322 g/mol. Meanwhile, the PDI also

increased from 1.22 to 1.35. The increasing of Mn suggested the dormant sites at the

SAN chain ends have allowed reactivation during the subsequent polymerization

process.

Conclusion

The RATRP of St/AN using AIBN as an initiator and FeCl3/IA as a catalyst

combination could be successfully performed at 60 �C under MI. The copolymer-

ization rate is faster under MI than that under CH. The kinetics experimental results

showed that copolymerization of St/AN is a ‘living’/controlled process under MI,

the linear increase of molecular weights with the increasing of monomer

Fig. 13 GPC curves of St and AN under MI in DMF at 60 �C. [St ? AN]0/[Macroinitiator]0/[FeCl3]/
[IA] = 200:1:1:2; MI power 300 W
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conversion. The values of PDI were broader at low conversion and almost kept

constant at high conversion. As prepared SAN copolymer possessed a chlorine-

terminated atom, which could be reactivated during the chain extension reaction

process.
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